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US02CMTH21 (T)- UNIT : IV

| e Solution of linear equations |

1.  Define Solution of General Linear System of equations.
A system of m linear equations in n unknowns x, zs, ..., z, has the general form
1121 + A12%2, . . ., 1T, = by
(2171 + A22%, . .., A2 Ty = by
A1 T1 + Aoy - o oy AppTy = by
If by = by = --- = b, = 0 then the system of linear equations is called a Homogeneous

system of Linear equations. In case atleast one of b;,7 = 1,1...n is non zero then the system
is called a Non-Homogeneous system of Linear equations.

2. Using Gauss Elimination method solve the following system of equations,
if possible.

1] 224+ y+2=0, 3x+2y+32=18, v+ 4y + 9z = 16;

2 1 1] 0
[A0[[]= | 3 2 3 |18 | Ris(—1),
14 9 |16

1 -3 -8 | —16 ]
~ 3 2 3 18 Rgl(—S),Rgl(—l),
1 4 9 16

1 -3 —8 | 16
~ |0 11 27 | 66 | Ry(1/11),
0 7 17| 32




1 -3 -8 | —16
~|0 1 % 6 | R3a(—T7),
0 7 17 32

1 -3 -8 | —16
~l0 1 % 6 | R3(—11/2),
0 0 —= | —10

1 -3 -8 —16
~l0 1 Z 6
0 0 1 55

Here the Left Matrix is converted to its Row Echelon form.
So, the reduced system of eauation is

xr—3y—8z=-16 ---(i)

y+E2=6 ---(ii)

2=6 --- (i)

Substituting z = 55 in (ii) we get y = —129

Substituting y = —129 in z = 55 (i)

x =37

Therefore the solution is

r=37, y=—129, 2 =155

1
2] x —2y+w =3, —x+2y+z—§w:—7, dr — 8y + 6z + Tw = —3

1 20 1| 3
AUl = | =1 2 1 =1 | =7 | Ru(1), Rai(—4),
4 86 7 |-3
(1 —2 0 1 3
~10 01 1 | —4/|Rs(-6),
(0 06 3|15
(1 20 1] 3
~10 0111 |4
0 000 9

The system has no solution, as the last row on the left is a ZERO row but the last element on
the Right is non-zero. Hence the system is inconsistent.



1 3 4 1 2 1 2
[3] -+ —-4+-=30, - +-—-=9, ———+4+-=10
x Y z z x Y Z
[ -1 3 4 ]30
[A3\I] = 3 2 -1 9 Rl(—l),

i 2 -1 2 10
1 -3 —4 | =30

~ 3 2 —]. 9 Rgl(—S),Rgl(—2),
| 2 —1 2 10
(1 -3 —4 | =30

~ |0 11 11 99 R2(1/11),
i 0 5 10 70
(1 -3 —4 | =30 ]

~ |0 1 1 9 R32(—5),
i 0 5 10 70
[1 -3 —4 | =30

~ |0 1 1 9 R3(1/5),
i 0 0 5 25
[1 -3 —4 | =30 ]

~ [0 1 1 9
i 0 0 1 5

1 _ 1 B 1
» YTy Ty

[Al7) =

— Ot N

— Ot

\)

N}

Ry(1/2),

R21(2), Ra1(—8),




1 1 1] o0
~lo 7 4| 1
0 -7 -4 | -1
11 1] o0
~loon s
0 -7 -4 | -1
11110
4
~10 1 2|3
0000

Ry(1/7),

R35(7),

As the last row elmenents of Left and Right row both are zero the system has infinitely many

solution

[5] 4z +3y —2=0,

3r+4y+2=0, be+y—42=0

[A4]1]

4 3
=3 4
5 1
(1 -1
~13 4
|5 1
(1 -1
~l0 7
0 6
(1 -1
~l0 1
0 6
(1 -1
~l0 1
0 0

-1 10
1 10| Rpa(—1),
—4 |0
—2 0]
L |0 | Rau(=3), Ra1(—5),
—4 |0 |
—2 10
710 | Ry(1/7),
6 |0 |
—2 10
1 | 0| Rs2(—6),
6 |0 |
—2 10]
110
010 |

3.

Consider the system of equations z+y+z =6, v+2y+32z = 10, x+2y+ Iz =
p. For what values of A\ and i does the system have (i) no solution (ii)
unique solution (iii) infinite solutions?




[A‘I} == 1 2 3 10 Rgl(—l),Rgl(—l),
|1 2 A W
[1 1 1 6
~ 01 2 4 R32(—1),

01 A—1|u—6

11 1 6
~|0 1 2 4
00 A—3 | p—10

What condition must by, b, and b3 satisfy in order for the system of equa-
tions =1 + 29+ 3x3 = by, 221+ 529+ 313 = by, 1+ 8x3 = b3 to be consistent?

1 2 3 | b
A= ]2 5 3 | by | Ror(—2), Rau(—1),
|10 8 | b
[ 1 2 3 by

~ 0 1 —3 bg - 2b1 R32(2),
0 -2 5 by — by

12 3 by
~ O 1 —3 bg - 2b1 R3<—1)7
0 0 —1 | bg—2by—5by

1 2 3 by
~ O 1 —3 bQ - 2b1
00 1 5b; + 2by — b3

Find the value )\ so that the following equations have a non-trivial solu-
tion 2r +y+22=0,z24+y+32=0,4r+3y+ A2 =0 .

2 1 210
[AlI]=]1 1 3 |0 | Ria(=1),
43 X0




43 X0
1 0 -1 0]
~ 1 4 |0 | Ry(—3),
|0 3 A+4 |0
1 0 -1 /0]
~ 1 4 10
(00 A—=8 |0

[1] Cayley-Hamilton Theorem.

Define the following terms.

[1] Singular Matrix

A square matrix A is said to be singular if [A| =0

[2] Non-singular Matrix

A square matrix A is said to be Non-singular if |A| # 0

[3] Characteristic Matrix

For a square matrix A the matrix A — [ is called its characteristic matrix.

[4] Characteristic Equation of a Matrix

For a square matrix A, an equation given by |A — x| = 0 is called its characteristic Equa-
tion.

7.  State and prove Cayley-Hamilton theorem

Suppose, A is a square matrix and let

|A—xl| = ag + a17 + axr® + ... + a,2" = 0



be the characteristic equation of A
Now, suppose,
adj.(A —xI) = By + Bz + Bya* + ... + B, 12" "

As, (A—zl).adj(A —xl) = |A—xl|.I, we get

(A —2I)(By+ Bix + Box® + ...+ B, 12" ') = (ag + ayw + axx® + ... + apa™) I
(A—2I)(By+ Bix + Box® + ... 4+ By_12™ ") = agl + a1lx + axlx® + ... + ap 2"

Comparing respective coefficients of powers of x on both the sides, we get

ABO = (lo]
ABl - BO = CL1[
ABQ — Bl B CLQI

_Bn—l = an]
Pre-multiplying theses successively with I, A, A%, A%, ..., A" and adding them we get
aol + a A+ ayA® + ...+ a,A" = O

This proves Cayley-Hamilton Theorem

8. Find the characteristic equation of the matrix A = |[—-1 2 —1| and

verify that it is satisfied by A and hence obtain A~!.

Finding Characteristic equation:
The characteristic equation is given by |A — xI| = 0.
Now,

A—zl|=0=| -1 2—-2 —1|=0
1 -1 2-x
— 2-2)[2-2)?*-1+1[-2—2)+1]+11-(2—2)] =0
— (2-2)’—3(2-2)+2=0
:>(8—12:U—|—6x %) —6+3r+2=0
— 234+ 622 —-92+4=0

Thus, the characteristics equation is 2° — 622 + 9z —4 = 0

Now we show that the characteristic equation is satisfied by A:

A3 —6A%2 +9A — 41 =



22 =21 21 6 —5 5 2 -1 1 1 0 0
-21 22 -21{-6|-5 6 6|+9(-1 2 —-1|—-41(0 1 0| =0
21 =21 22 5 -5 6 1 -1 2 0 01
A~! can be calculated as follows
3 1 -1
1 1
A‘l—ZAQ—gA—l—%I:Z 1 3 1
-1 1 3
1 2 0
9.  Show that the matrix A= [2 —1 0 | satisfies Cayley-Hamilton theorem.
0 0 -1
Hence or otherwise obtain A~! and A~2.

Characteristic equation A® + X2 — 5\ — 5 =0
The characteristic equation is satisfied :

A3+ A2 —5A - 5] =

5 10 0 500 5 10 0 500
10 -5 0f(+1]0 5 0l —-1]10 =5 0 =10 5 0| =0
0 0 -1 0 0 1 0 0 1 005

Also A= and A2 can be calculated given as follows

1 1 1 2 0
A*1:5(A2—I—A—5]):g 2 -1 0| and

0 1 2
10.  Verify Cayley-Hamilton theorem for the matrix |3 —3 2 |. Hence find
1 1 -1
its inverse if possible

Characteristic equation A3 4+ 4X? —4\ — 17 =0
The characteristic equation is satisfied :

A3+ 4A% —4A - 171 =

-3 8 8 5 -1 0 0 1 2 100
40 =51 16| +4|-7 14 -2 —-4(3 -3 2| —-17]0 1 0| =0
-4 16 -7 2 =3 =5 1 1 -1 0 01

Also A~1 is given by



1 1
-1 — (A2 — = -9
A 17(/1 +4A —41) 7 ) 6

6 1 -3
1 2 3
11.  Verifty Cayley-Hamilton theorem for the matrix (2 —1 4|. Hence find its
3 1 1
inverse if possible
Characteristic equation A — A\ — 18\ — 30 =0
The characteristic equation is satisfied :
A3 — A% —18A — 301 =
62 39 68 14 3 14 1 2 3] 100
48 21 78| — |12 9 6| —-18|2 -1 4, -30(0 1 0| =0
62 24 62 8 6 14 3 1 1 0 01

Also A1 is given by

. R
Al= —(A2—A—18))=— |1 -4 1
30 30| 1 1 4

2 11
12.  Verify Cayley-Hamilton theorem for A = |0 1 0| and use it to find the
11 2

simplified form of A% — 5A7 +7A5 — 34% 4 A* — 543 + 842 — 2A + Is.

For the given matrix A the characterstic equation is given by,

|A—al| =0
-+ 2 1 1
0 —xz+1 0]=0
1 1 —x+2

2 =522 4+72x-3=0

Now, we verify whether matrix A satisfies its characteristic equation

[ 14 13 13 ] 5 4 4 2 1 1 1 00
A3 —5A2-7A-3I=| 0 1 O|-5{010|-7]/010]|-=3]0T10
| 13 13 14 | 4 4 5 11 2 00 1

[ 14 13 13 ] 25 20 20 14 7 7 300

=/ 0 1 o|—-| 0 5 0|—-| 07 0|—=]030

| 13 13 14 | 20 20 25 77 14 00 3




I
oo o
oo o
oo o

Since,

A3 —5A? —7TA—-3I=0

matrix A satisfies its characterstic equation.
Thus, Cayley-Hamilton theorem is verified for the matrix A

‘ [1] Properties of Eigen Values and Eigen Vectors. \

Define the following terms.

[1] Characteristic Vector of a matrix

Any non-zero vector X is said to be a characteristic vector or Eigen vector of a square ma-
trix A if there exists a real number A such that AX = AX. Here X is known as a characteristic
root or Eigen root of the matrix correcponding to the characteristic vector X

[2] Characteristic Root of a Matrix

Any non-zero vector X is said to be a characteristic vector or Eigen vector of a square ma-
trix A if there exists a real number A such that AX = AX. Here X\ is known as a characteristic
root or Eigen root of the matrix correcponding to the characteristic vector X

[3] Orthogonal Matrix

For a square matrix A if AA’ = I then A is called an orthogonal matrix.

14.

15.  For square matrices of same order A and X the product X’AX is called
Hermitan Form.

For a square matrix A if AA? = A?A = I then A is called a Unitary matrix.

16. A Hermitan Form always assumes a real value.

11



For a square matrix A if AA? = A°A = I then A is called a Unitary matrix.

17.

18. Prove that the characteristic roots of a real symmetric matrix are all
real.

Let A be a real symmetric matrix.
Therefore, we have A’ = Aand A=A
Now,

A® = (A)

Therefore A is a Hermitian matrix also.
By a theorem, the characteristic roots of every Hermitian matrix are all real.
Hence, the characteristic roots of every real symmetric matrix are all real.

19.  Prove that characteristic roots of a Skew-Hermitian matrix are either
zero or pure imaginary numbers.

Let A be a characteristic root of a Skew-Hermitian matrix A and X # O be corresponding
characteristic vector.
As A is a Skew-Hermitian matrix we have A? = —A
Therefore,
AX = \X

Multiplying with 7 we get,
1AX =i\ X
(1A)X = (INX

Therefore, 7 is a characteristic root of ¢ A.
Now,

(iA)? =7A°
= —i(—A4)
—iA

Therefore ¢ A is a Hermitian matrix.
By a theorem, the characteristic roots of every Hermitian matrix are all real.
Therefore, all the characteristic roots ¢\ of iA are real.

12



Hence, for every characteristic root ¢\ to be a real number, either A = 0 or A is purely imagi-
nary.

20. Prove that characteristic roots of a real Skew-Symmetric matrix are
either zero or pure imaginary numbers.

Let A be a real Skew-Symmetric matrix.
Therefore, we have A’ = —A and A= A
Now,

Therefore A is a Skew-Hermitian matrix also.

By a theorem, the characteristic roots of every Skew-Hermitian matrix are either zero or pure
imaginary.

Hence, the characteristic roots of a real Skew-Symmetric matrix are either zero or pure imagi-
nary numbers.

21.  Prove that the modulus of a characteristic root of a unitary matrix is
unity.

Let A be a Unitary matrix.

APA=AA" =T
Now, if X is a characteristic root of A and X # O is corresponding characteristic vector then,

AX =AX  ----(1)

L (AX)! = (A X)?

S XA =2X°
L (XPA%) (AX) = (AX?) (AX)  (using (1))
S X0 (APA) X = (AN X"
XGIX (M) X
- (W) x
co(1— )\)\) XGX 0
As X # O, we have XX # 0.
Therefore, we have, B
1-A=0
=1

13



SAP=1
SN =1

Thus, modulus of a characteristic root of a unitary matrix is unity.

22. Prove that the modulus of a each characteristic root of an orthogonal
matrix is unity.

Let A be an orthogonal matrix.
Therefore, we have AA' = A’A = 1.
Also, as A isreal, A= A
Now, A = (A)" = A’
Therefore,
AAY = AA =T

Hence A is a Unitary matrix also.
By a theorem, the modulus of a characteristic root of a Unitary matrix is unity.
Hence, the modulus of a each characteristic root of an orthogonal matrix is also unity.

23. If S is a real skew-symmetric matrix then prove that /—S is non-singular
and the matrix A= (I +S)(I — S)™! is orthogonal

Here, S is a real skew-symmetric matrix.
Now, if I — S is a singular matrix then |[S — I| =0

But then 1 is a characteristic root of S which is not possible as S being real skew-symmetric
it can have only zeros or purely imaginary roots.
Thus, I — S is non-singular

Next, we show that A = (I + S)(I — S)~! is orthogonal
Now, A'=[(I —S) V(I +S) =[I-9)]""(I+S)

But, ([ —S)=I'-8'=I+8 and (I+8)=I+5=1-8
A =(I+8)I-5)

Now,

AA=T+S) T -8S)(T+9)I -8
= +9) I+ 8)(I-8) (IS8
AA=T

Therefore A is an orthogonal matrix

14



24.  Prove that every orthogonal matrix A can be expressed as A = (I+5)(] —
S)~! by a suitable choice of real skew-symmetric matrix S provided that
—1 is not a characteristic root of A

To prove the theorem it is sufficient to show that for an orthogonal matrix A such that —1
is not a characeristic root of A, such that A = (I + 5)(I —S)~! determines a skew-symmetric

matrix S. Now,

A=(I+8)I-8) " =AI-8) =1+S
S A—AS=1+S5
S A—T=(A+DS---(1)

Since —1 is not a characteristic root of A we have |A — (—1)I] # 0.
Therefore,

|A+1|#0

Hence, (A+ I)™! exists.
Therefore, premultiplying with (A + I)~! on both sides of (2) we get,

S=(A+1)""A-1)

This estabishes existence of S. Finally we show that S is a real skew symmetric matrix.

=[(A+D)H(A=-D]
=(A- DWA+D1]
=(A-DI[(A+ 1)

— (A~ DA+ 1)
=A+DH A -T1)

= (A + AA)H(A — A'A)
= [A'(T+ A)HA(T — A)]
= (I + A" 1(A)A(T - A)
= (

I+ A1 - A)
=—(A+D) (A=)
=-9
Hence, S is a skew-symmetric matrix.
25. Show that a characteristic vector X, corresponding to a characteristic

root A of a martix A is also a characteristic vector of every matrix f(A);
f(z) being any scalar polynomial, and the corresponding root for f(A) is

f(A). In general show that if g(z) = ?Exi, where |f2(A)| # O then g()\) is

a characteristic root of g(A) = f1(A) {fo(4)} .

15



Let A be a characteristic root and X # O be corresponding characteristic vector of a matrix
A. Therefore,
AX = )X

Now,
A’X = A(AX) = ADX) = MAX) = \2X

Repeating the process k times, we get,
AFX =\ X
If f(x) = apr + a1 + axx® + - - - + a,,x™ is a scalar polynomial then we have,
F(A)X = (a] + A+ a A’ + - + a4, A™) X

= apX + @ AX + ag A’X + - + a, AT X

= aoX + i AX + XN’ X + - + a4, A" X

= (a0+a1)\+a2)\2—|—---+am)\m)X

L fAX = f(ONX

Therefore, f(\) is a characteristic root of f(A) corresponding to characteristic vector X.

Hence, fi(A) and fa(\) are characterstic roots of fi(A) and fo(A) respectively.
Therefore,
Now, if | f2(A)| # 0 then f»(A) is a non-singular matrix and hence characteristic roots of f5(A)

are non-zero.
Therefore,

fo(A) #0
Hence, we also have {fg(A)}_l X = {fz(/\)}_l

Now, if g(A) = fi(A){f2(A)} " then
g(A)X = f1(A) {[f-(4)] ' X}
= fi(4) {f(A)] X}
= {N}" (f1(A)X)
= {LN} (A ) )
= AN {LW}!
=g(M)X

Thus, g()) is a characteristic root and X is corresponding characteristic vector of g(A) =

Fi(A)[f2(A)]

26. Show that the two matrices A and P 'AP have the same characteristic
roots.

Let A be a square matrix and P be a non-singular matrix of same order.
Suppose B = P~1AP.
Now,
B—xl=P''AP — 2l =P 'AP - P Y(2])P = P"'(A—2I)P

16



Therefore,

|B—zl| = |P™"(A—al)P|
= |P7'||A = zI||P|
= |P7!||P||A — 21
= |P7'P||A -zl
= [I]|A— =z
= |A — 2]

Therefore,
|IB—z2l|=0 <= |[A—zl|=0

Therefore, P~' AP and A have same characteristic equations. Hence, P~* AP and A have same
characteristic roots.

27.  Show that the characteristic roots of A’ are the conjugates of the char-
acteristic roots of A.

Let A be a characteristic root and X # O be corresponding characteristic vector of a square
matrix A.

Now,
|A? — NI = |(A = \D)?|
= [(A—AI)|
= |(A = AI)]
Therefore,

A =X =0 <= |[(A=X)|=0 < |[A-X|=0

Hence, ) is a characteristic root of A% whenever \ is a characteristic root of A.

28. Find the characteristic roots and characteristic vectors of

—4 8 —12
] | 6 -6 12
6 —8 14

For the given matrix A the characterstic equation is given by,

|A—al| =0

17



The eigen values of A are

—x—4
6
6

8 —12
—z—6 12
-8 —x+14

=42 +4x=0

(z—2)°z=0

A=2,0

Finding eigen vectors for the eigen value A = 2

=0

Corresponding to A = 2 we have the following matrix equation

(A—(2)X =0

—6 8 —12 T
6 —8 12 y | =
6 -8 12 z

This results in the following system of linear equations

—6r+8y—122=0
6r—8y+122=0
6r—8y+122=0

Here equations (1),(2) and (3) are linealy dependent So we consider any one of them. Let us
consider
—6z+8y—122=0
4
— g2
T=gy=22

Therefore the eigen vectors corresponding to A = 2 are given by

%y—QZ

X = Y

z
sy ] —22 ]
X = y | + 0
0 | z |
e
X=yl|1l]|+=2 0
0 I

where y,z € R —0

18



Finding eigen vectors for the eigen value A = 0
Corresponding to A = 0 we have the following matrix equation

(A—(0))X =0

-4 8 —12 x

6 —6 12 y | =0
6 -8 14 z
This results in the following system of linear equations
—4x4+8y—122=0 ---(1)
6r—6y+122=0 ---(2)
6r—8y+14z2=0 ---(3)

No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers
rule
x B —y B z
8§ —12| | -4 —12| | -4 8
’—6 12‘ ‘ 6 12‘ ‘6—6‘
T -y oz
1 -1 -1

Therefore the eigen vectors corresponding to A = 0 are given by

1
X=k| -1
—1
where k€ R—0
-2 -8 =12
2] |1 4 4
0 0 1

For the given matrix A the characterstic equation is given by,

|A—al| =0
—x — 2 -8 —12
1 —x+14 41=0
0 0 —z+1

2 —322422=0

(x—=1)(x—=2)z=0

19



The eigen values of A are
A=1,2,0

Finding eigen vectors for the eigen value A =1
Corresponding to A = 1 we have the following matrix equation

(A— ()X =0

-3 -8 —12 x

1 3 4 y | =0
0 0 0 z
This results in the following system of linear equations
—3r—-8y—122=0 ---(1)
r+3y+4z=0 ---(2)

No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers
rule

T . —y o z
’—8 —12‘_"—3 —12‘_"—3 —8‘
3 4 1 4 1 3
T —Y Z
40 1

Therefore the eigen vectors corresponding to A = 1 are given by

4
X =k
-1

where k€ R —0
Finding eigen vectors for the eigen value A = 2
Corresponding to A = 2 we have the following matrix equation

(A— (2 )X =0

-4 -8 —-12 x
1 2 4 y | =0
0 0 -1 z

This results in the following system of linear equations

—4r—8y—122=0 ---(1)
r+2y+4z=0 ---(2)
—2=0 ---(3)

20



No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers
rule

X . -y . z
‘—8 —12‘_ —4 —12‘_‘—4 —8‘
2 4 1 4 12
r -y =z
2 10

Therefore the eigen vectors corresponding to A = 2 are given by

X=k| -1

where k € R — 0
Finding eigen vectors for the eigen value A = 0
Corresponding to A = 0 we have the following matrix equation

(A= (0))X =0

-2 -8 —12 x
1 4 4 y | =0
0 0 1 z

This results in the following system of linear equations

—2r—8y—122=0 ---(1)
r+4y+4z=0 ---(2)
z=0 ---(3)

No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers
rule

x B —y B z
-8 —12| | -2 -12] |-2 -8
4 4 1 4 1 4
r -y oz
4 -1 0
Therefore the eigen vectors corresponding to A = 0 are given by
4
X=k| -1
0
where k€ R -0
3 -1 1
B8] (-1 5 -1
1 -1 3

21



For the given matrix A the characterstic equation is given by,

|A—al| =0
—x+3 -1 1
-1 —x+5 -1]=0
1 -1 —x+3

22— 1122 4+362—-36=0

(x—2)(z—=3)(x—6)=0

The eigen values of A are

A=2,3,6

Finding eigen vectors for the eigen value A = 2
Corresponding to A = 2 we have the following matrix equation

(A—(2))X =0

1 -1 1 x

-1 3 -1 y | =0
1 -1 1 z
This results in the following system of linear equations
r—y+z=0 ---(1)
—r+3y—z=0 ---(2)
r—y+z2=0 ---(3)

Here equations (1) and (3) are linealy dependent Solving equations (1) and (2) using Cramers
rule

x B —y B z
-1 1] |t 1| | 1 -1
3 -1 -1 -1 -1 3
r_ -y oz
10 -1
Therefore the eigen vectors corresponding to A = 2 are given by
1
X=k 0
-1

where k € R — 0
Finding eigen vectors for the eigen value A = 3
Corresponding to A = 3 we have the following matrix equation

(A—(3))X =0

22



0 —1 1 T
-1 2 -1 y | =0
1 -1 0 z

This results in the following system of linear equations

—y+2=0 ---(1)
—r+2y—z=0 ---(2)
r—y=0 ---(3)

No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers

rule

-1 1
2 -1

where k € R — 0
Finding eigen vectors for the eigen value A = 6
Corresponding to A = 6 we have the following matrix equation

(A— (6)[)X =0

-3 -1 1 T
~1 -1 -1 ||yl|=0
1 -1 -3 z

This results in the following system of linear equations

—3r—y+z=0 ---(1)
—x—y—z2=0 ---(2)
r—y—3z=0 ---(3)

No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers

rule
x —y z

-1 1 3 1| [-3 -1
1 1




r -y oz
1 -2 1
Therefore the eigen vectors corresponding to A = 6 are given by

1
X=kr| -2
1
where k€ R —0
-2 2 =3
[4] 2 1 -6
-1 -2 0

For the given matrix A the characterstic equation is given by,

|A—2zI|=0
—x —2 2 =3
2 —x+1 —61|=0
-1 -2 —x

2 4a? =21 —45=0

(2432 —5)=0

The eigen values of A are
A=5,-3

Finding eigen vectors for the eigen value A =5
Corresponding to A = 5 we have the following matrix equation

(A—(5) )X =0

-7 2 =3 x
2 -4 —6 y | =0
-1 -2 =5 z

This results in the following system of linear equations

—Tr4+2y—32z=0 ---(1)
20 —4y—62=0 ---(2)
—r—2y—5z=0 ---(3)

No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers

rule
T —y z

‘ 2 _3“‘_7 _3‘:‘_7 2‘

-4 —6 2 —6 2 4
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[E_—y_ zZ

1 2 -1
Therefore the eigen vectors corresponding to A = 5 are given by

1
X =k 2
-1
where k€ R —0
Finding eigen vectors for the eigen value A = —3
Corresponding to A = —3 we have the following matrix equation

(A—(=3))X =0

1 2 =3 T
2 4 -6 y | =0
-1 -2 3 z

This results in the following system of linear equations

r+2y—3z=0 ---(1)
20+4y—62=0 ---(2)
—x—2y+3z2=0 ---(3)

Here equations (1),(2) and (3) are linealy dependent So we consider any one of them. Let us
consider

r4+2y—32=0

r=-2y+3z2
Therefore the eigen vectors corresponding to A = —3 are given by
—2y+3z2
= )
z
-2y | 3z ]
X = y | + 0
0 ] z |
—2 ] 3]
X =y 11 4+=2
0 | I

where y,z € R—0
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e )
— O
[ R S

For the given matrix A the characterstic equation is given by,

|A—al| =0
—x 1 1
1 —=x 11 =0
1 1 —=x
2 —-3r—-2=0

(z+1)*(z—2)=0

The eigen values of A are
A=2 -1

Finding eigen vectors for the eigen value A = 2
Corresponding to A = 2 we have the following matrix equation

(A—(2))X =0

-2 1 1 T
1 =2 1 y | =0
1 1 -2 z

This results in the following system of linear equations

—2r+y+2=0 ---(1)
r—2y+z2=0 ---(2)
r+y—2z2=0 ---(3)

No two equations are mutually linearly dependent Solving equations (1) and (2) using Cramers

rule
x B -y z
1 1] |-21 -2 1
-2 1 11 ' ‘ 1 =2 ’
ro-y oz
11 1
Therefore the eigen vectors corresponding to A = 2 are given by
1
X=k|1
1
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where k€ R —0
Finding eigen vectors for the eigen value A = —1
Corresponding to A = —1 we have the following matrix equation

(A—(-1))X =0

1
1
1

—_ = =

1
1 y | =0
1 z

This results in the following system of linear equations

r+y+z=0 ---(1)
r+y+z2=0 ---(2)
r+y+z2=0 ---(3)

Here equations (1),(2) and (3) are linealy dependent So we consider any one of them. Let us
consider

r+y+z2=0
T=—-Yy—z
Therefore the eigen vectors corresponding to A = —1 are given by
X = Y
z
C Ly .
X = y |+ 0
| 0] z
[ —1 ] —1
X=y 1| +=z 0
| 0 | 1

where y,z € R —0
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